Kernel and Loki Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Kernel plugin collects various statistics about the Linux kernel, including context switches, page usage, and entropy availability.
The Loki plugin allows users to send logs to Loki for aggregation and querying, leveraging Loki’s efficient storage capabilities.
Integration details
Kernel
The Kernel plugin is designed exclusively for Linux systems and gathers essential kernel statistics that are not covered by other plugins. It primarily focuses on the metrics available in /proc/stat
, as well as the entropy available from /proc/sys/kernel/random/entropy_avail
. Additional functionalities include the capture of Kernel Samepage Merging (KSM) data and Pressure Stall Information (PSI), requiring Linux kernel version 4.20 or later. This plugin provides a comprehensive look into system behaviors, enabling better understanding and optimization of resource management and usage. The metrics it collects are critical for monitoring system health and performance.
Loki
This Loki plugin integrates with Grafana Loki, a powerful log aggregation system. By sending logs in a format compatible with Loki, this plugin allows for efficient storage and querying of logs. Each log entry is structured in a key-value format where keys represent the field names and values represent the corresponding log information. The sorting of logs by timestamp ensures that the log streams maintain chronological order when queried through Loki. This plugin’s support for secrets makes it easier to manage authentication parameters securely, while options for HTTP headers, gzip encoding, and TLS configuration enhance the adaptability and security of log transmission, fitting various deployment needs.
Configuration
Kernel
[[inputs.kernel]]
## Additional gather options
## Possible options include:
## * ksm - kernel same-page merging
## * psi - pressure stall information
# collect = []
Loki
[[outputs.loki]]
## The domain of Loki
domain = "https://loki.domain.tld"
## Endpoint to write api
# endpoint = "/loki/api/v1/push"
## Connection timeout, defaults to "5s" if not set.
# timeout = "5s"
## Basic auth credential
# username = "loki"
# password = "pass"
## Additional HTTP headers
# http_headers = {"X-Scope-OrgID" = "1"}
## If the request must be gzip encoded
# gzip_request = false
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Sanitize Tag Names
## If true, all tag names will have invalid characters replaced with
## underscores that do not match the regex: ^[a-zA-Z_:][a-zA-Z0-9_:]*.
# sanitize_label_names = false
## Metric Name Label
## Label to use for the metric name to when sending metrics. If set to an
## empty string, this will not add the label. This is NOT suggested as there
## is no way to differentiate between multiple metrics.
# metric_name_label = "__name"
Input and output integration examples
Kernel
-
Memory Optimization through KSM: Utilize the KSM capabilities of this plugin to monitor memory usage patterns in your applications and dynamically adjust the memory allocation strategy based on shared page usage metrics. By analyzing the data collected, you can identify opportunities for consolidating memory and optimizing performance without manual intervention.
-
Real-time System Health Monitoring: Integrate the metrics collected by the Kernel plugin into a real-time dashboard that visualizes key kernel statistics including context switches, interrupts, and entropy availability. This setup allows system administrators to proactively respond to performance issues before they escalate into critical failures, ensuring smooth operation of Linux servers.
-
Enhanced Anomaly Detection: Combine the data from this plugin with machine learning models to predict and detect anomalies in kernel behavior. By continuously monitoring metrics like process forking rates and entropy levels, you can implement an adaptive alerting system that triggers on performance anomalies, allowing for quick responses to potential issues.
-
Resource Usage Patterns Analysis: Use the Pressure Stall Information collected by the plugin to analyze resource usage patterns over time and identify potential bottlenecks under load conditions. By adjusting application performance based on the PSI metrics, you can improve overall resource management and maintain service reliability under varying workloads.
Loki
-
Centralized Logging for Microservices: Utilize the Loki plugin to gather logs from multiple microservices running in a Kubernetes cluster. By directing logs to a centralized Loki instance, developers can monitor, search, and analyze logs from all services in one place, facilitating easier troubleshooting and performance monitoring. This setup streamlines operations and supports rapid response to issues across distributed applications.
-
Real-Time Log Anomaly Detection: Combine Loki with monitoring tools to analyze log outputs in real-time for unusual patterns that could indicate system errors or security threats. Implementing anomaly detection on log streams enables teams to proactively identify and respond to incidents, thereby improving system reliability and enhancing security postures.
-
Enhanced Log Processing with Gzip Compression: Configure the Loki plugin to utilize gzip compression for log transmission. This approach can reduce bandwidth usage and improve transmission speeds, especially beneficial in environments where network bandwidth may be a constraint. It’s particularly useful for high-volume logging applications where every byte counts and performance is critical.
-
Multi-Tenancy Support with Custom Headers: Leverage the ability to add custom HTTP headers to segregate logs from different tenants in a multi-tenant application environment. By using the Loki plugin to send different headers for each tenant, operators can ensure proper log management and compliance with data isolation requirements, making it a versatile solution for SaaS applications.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration