Intel PowerStat and Thanos Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Intel PowerStat and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

Monitor power statistics on Intel-based platforms and is compatible with Linux-based operating systems. It helps in understanding and managing power efficiency and CPU performance.

This plugin sends metrics from Telegraf to Thanos using the Prometheus remote write protocol over HTTP, allowing efficient and scalable ingestion into Thanos Receive components.

Integration details

Intel PowerStat

The Intel PowerStat plugin is designed to monitor power statistics specifically on Intel-based platforms running a Linux operating system. It offers visibility into critical metrics such as CPU temperature, utilization, and power consumption, making it essential for power saving initiatives and workload migration strategies. By leveraging telemetry frameworks, this plugin enables users to gain insights into platform-level metrics that help with monitoring and analytics systems in the context of Management and Orchestration (MANO). It facilitates the ability to make informed decisions and perform corrective actions based on the state of the platform, ultimately contributing to better system efficiency and reliability.

Thanos

Telegraf’s HTTP plugin can send metrics directly to Thanos via its Remote Write-compatible Receive component. By setting the data format to prometheusremotewrite, Telegraf can serialize metrics into the same protobuf-based format used by native Prometheus clients. This setup enables high-throughput, low-latency metric ingestion into Thanos, facilitating centralized observability at scale. It is particularly useful in hybrid environments where Telegraf is collecting metrics from systems outside Prometheus’ native reach, such as SNMP devices, Windows hosts, or custom apps, and streams them directly to Thanos for long-term storage and global querying.

Configuration

Intel PowerStat

[[inputs.intel_powerstat]]
  # package_metrics = ["current_power_consumption", "current_dram_power_consumption", "thermal_design_power"]
  # cpu_metrics = []
  # included_cpus = []
  # excluded_cpus = []
  # event_definitions = ""
  # msr_read_timeout = "0ms"

Thanos

[[outputs.http]]
  ## Thanos Receive endpoint for remote write
  url = "http://thanos-receive.example.com/api/v1/receive"

  ## HTTP method
  method = "POST"

  ## Data format set to Prometheus remote write
  data_format = "prometheusremotewrite"

  ## Optional headers (authorization, etc.)
  # [outputs.http.headers]
  #   Authorization = "Bearer YOUR_TOKEN"

  ## Optional TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

  ## Request timeout
  timeout = "10s"

Input and output integration examples

Intel PowerStat

  1. Optimizing Data Center Energy Usage: Monitor power consumption metrics across all CPUs in a data center. By capturing real-time data, administrators can identify which servers consume the most power and implement shutdowns or load balancing strategies during low demand periods, effectively reducing operational costs.

  2. Dynamic Workload Migration Based on Power Efficiency: Integrate this plugin with a cloud orchestration tool to enable dynamic migration of workloads based on power usage metrics. If a particular server is recorded as consuming excessive power without corresponding output, the orchestrator can seamlessly migrate workloads to more efficient nodes, ensuring optimal resource utilization and lower energy expenses.

  3. Monitoring and Alerting Mechanism for Overheating CPUs: Implement an alerting system using the CPU temperature metrics captured by Intel PowerStat. Setting thresholds for temperature can alert system administrators when a CPU is prone to overheating, allowing proactive measures to be taken before hardware damage occurs, ultimately extending the life of the components.

  4. Performance Benchmarking for CPU-intensive Applications: Use the metrics provided to benchmark the performance of CPU-intensive applications. By analyzing the cpu_frequency, cpu_temperature, and power metrics under load, developers can optimize application performance and make informed decisions regarding scaling and resource allocation.

Thanos

  1. Agentless Cloud Monitoring: Deploy Telegraf agents across cloud VMs to collect system and application metrics, then stream them directly into Thanos using Remote Write. This provides centralized observability without requiring Prometheus nodes at each location.

  2. Scalable Windows Host Monitoring: Use Telegraf on Windows machines to collect OS-level metrics and send them via Remote Write to Thanos Receive. This enables observability across heterogeneous environments with native Prometheus support only on Linux.

  3. Cross-Region Metrics Federation: Telegraf agents in multiple geographic regions can push data to region-local Thanos Receivers using this plugin. From there, Thanos can deduplicate and query metrics globally, reducing latency and network egress costs.

  4. Integrating Third-Party Data into Thanos: Collect metrics from custom telemetry sources such as REST APIs or proprietary logs using Telegraf inputs and forward them to Thanos via Remote Write. This brings non-native data into a Prometheus-compatible, long-term analytics pipeline.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration